Los planetas ligeros o gigantes se localizan en la parte externa del Sistema Solar. Son planetas constituidos básicamente por hidrógeno, metano y helio, y que además no tienen superficie sólida como en los planetas terrestres . En este caso es posible encontrarlos en distintos lugares del Universo.
Tienen importantes actividades meteorológicas y procesos de tipo gravitacional, con un pequeño núcleo y una gran masa de gas en convección permanente.
Se dividen en dos grandes tipos:
-Un gigante gaseoso es un planeta gigante que no está compuesto mayoritariamente de roca u otra materia sólida sino de fluidos; aunque dichos planetas pueden tener un núcleo rocoso o metálico. Se cree que tal núcleo es probablemente necesario para que un gigante gaseoso se forme, pero la mayoría de su masa es en forma de gas, o gas comprimido en estado líquido.
A diferencia de los planetas rocosos, los gigantes gaseosos no tienen una superficie bien definida. Son Júpiter y Saturno, y también se les denomina “planetas jovianos”.
-En cambio, Urano y Neptuno pertenecen a una subclase separada de planetas gigantes: gigantes helados, que, debido a su estructura, principalmente constituida por hielo, roca y gas, también se les denomina “planetas uranios”. Se diferencian de gigantes gaseosos «tradicionales», como Júpiter y Saturno, porque su proporción de hidrógeno y de helio es mucho más baja, principalmente por su mayor distancia al Sol.
LA ATMÓSFERA DE LOS GIGANTES GASEOSOS
Júpiter y Saturno no tienen una superficie sólida. Son enormes bolas de gas y líquido con una composición muy similar a la del Sol que giran sobre sí mismas a gran velocidad. No en vano, a Júpiter y Saturno se les llama ‘gigantes gaseosos’ por algo (aunque realmente deberían ser ‘gigantes líquidos’, ya que la mayor parte de su interior está en forma líquida o metálica).
La atmósfera superior de los dos planetas está dominada por un llamativo conjunto de bandas y cinturones nubosos que nada tiene que ver con los patrones climáticos de nuestro planeta. ¿A qué se debe esta diferencia? La radiación solar. Efectivamente, en la Tierra el astro rey es el causante de la circulación atmosférica. La gran diferencia de temperaturas entre las regiones tropicales y los polos es el factor principal que rige nuestra atmósfera. Este gradiente de energía provoca la creación de células de convección de Hadley cerca del ecuador y además las montañas y cordilleras se encargan de bloquear los vientos, creando patrones climáticos locales muy característicos.
¿Y qué pasa en Júpiter y Saturno? En este caso, el factor principal es el calor interno. De hecho, la diferencia de temperaturas entre el ecuador y los polos es prácticamente nula, pero para comprender el clima de estos planetas debemos saber primero cómo es su interior. Júpiter y Saturno están formados principalmente por hidrógeno y algo de helio (un 15%), más o menos igual que el Sol. A medida que nos adentramos en el interior de uno de estos mundos, la temperatura aumenta y la atmósfera se va haciendo más densa hasta que el hidrógeno se vuelve líquido. Si seguimos descendiendo el hidrógeno líquido se convierte en hidrógeno metálico.
Precisamente, es esta capa de hidrógeno metálico la causante del los potentes campos magnéticos que rodean a estos planetas. De hecho, si pudiéramos ver a simple vista la magnetosfera de Júpiter, ocuparía un tamaño en el cielo similar al de la Luna llena. Por algo se dice que es el ‘objeto’ más grande del Sistema Solar -después del Sol, obviamente-. ¿Y qué hay en el centro de estos planetas? Nadie lo sabe.
Pero volvamos a la atmósfera superior. Todo el clima de estos planetas tiene lugar en esta capa, que apenas constituye un 1% del conjunto de la atmósfera. Lo primero que nos llama la atención es el patrón de franjas nubosas de estos planetas, mucho más marcado en el caso de Júpiter, pero también visible en Saturno. Las bandas oscuras se conocen como ‘cinturones’, mientras que las claras se denominan ‘zonas’. Las zonas son por lo general masas de aire frío descendentes -recuerda que el ‘aire’ en Júpiter y Saturno es principalmente hidrógeno-, mientras que los cinturones son masas ascendentes. Los vientos de las zonas y cinturones soplan a una velocidad casi constante en la misma dirección, pero a veces en sentidos contrarios entre sí. En Júpiter los vientos pueden alcanzar los 350 km/h, pero Saturno le gana por goleada en este aspecto, con vientos que llegan a los 1800 km/h. Como resultado, la velocidad relativa entre los vientos de zonas y cinturones puede superar los 500 km/h en Júpiter.
El calor interno de los planetas es el que gobierna los vientos y la formación de estructuras en Júpiter y Saturno. ¿Pero de dónde proviene este calor? Uno de los misterios de los gigantes gaseosos es la relativa ausencia de helio en la atmósfera exterior. No obstante, sabemos que el helio forma el 15% de estos mundos. Se cree que el helio, al ser más denso que el hidrógeno, se condensa en la capa de hidrógeno metálico formando enormes gotas que se precipitan hacia el núcleo del planeta, liberando calor en el proceso. Esta lluvia de helio en un mar de hidrógeno metálico es la principal fuente de energía interna de los gigantes gaseosos, a la que debemos añadir el calor residual de formación de ambos planetas.
Pero el calor interno no explica por si solo la estructura en bandas de la atmósfera. La rapidísima rotación es otro factor a tener en cuenta. Júpiter y Saturno tienen un periodo de rotación muy similar, de unas diez horas, lo que provoca un abultamiento ecuatorial visible a simple vista. La famosa expresión ‘la Tierra está achatada por los polos’ se queda corta a la hora de describir lo que ocurre en estos planetas. Esta elevada velocidad de rotación determina también la estabilidad de bandas y cinturones. En la Tierra las tormentas vienen y van en cuestión de horas o días. En Júpiter y Saturno las grandes estructuras nubosas pueden durar fácilmente décadas o siglos. La enorme escala temporal de la atmósfera de Júpiter y Saturno es otra de las diferencias con la atmósfera terrestre.
Por contra, las pequeñas estructuras tienen una vida mucho menor. Las tormentas o remolinos que aparecen en los bordes de las franjas pueden aparecer y desaparecer en cuestión de pocos días, como en la Tierra. Curiosamente, se cree que son estas turbulencias las que generan los vientos zonales y no al revés. Es decir, no es que los fuertes vientos generen remolinos y ciclones, sino todo lo contrario.
Por otro lado, debemos tener cuidado a la hora de exagerar la magnitud del calor interno de los planetas gigantes. Sí, estamos hablando de muchísima energía en términos absolutos, pero la superficie irradiada también lo es. Por eso la potencia generada por esta fuente de calor, aunque superior a la solar, es de apenas unos cuantos vatios por metro cuadrado, mientras que la irradiación del Sol sobre la Tierra es de unos cien vatios por metro cuadrado. No obstante, en el caso de Saturno la mayor inclinación de su eje de rotación (27º frente a los 3º del eje de Júpiter) provoca cambios en la atmósfera de naturaleza estacional, por lo que, a pesar de no ser el factor más importante, la luz del Sol sí que influye en los gigantes gaseosos, o al menos en Saturno.
COMPOSICIÓN DE LOS GIGANTES HELADOS
Los planetas gigantes helados tienen una gran cantidad de volátiles atrapados en forma de hielo, como agua, metano y amoniaco alrededor de un núcleo de elementos pesados capaz de retener una atmósfera de hidrógeno-helio que normalmente llega a ser el 10% de la masa total del planeta. La mínima masa de estos planetas es de unas 10 masas terrestres, necesarias para atrapar una atmósfera como la descrita. En el Sistema Solar, planetas de este tipo serían Urano y Neptuno con masas entre 14 y 17 veces la de la Tierra.
Las capas atmosféricas son muy brumosas, con una pequeña cantidad de metano, que les aporta sus característicos colores aguamarina y azul ultramar, respectivamente. En ambos existen campos magnéticos fuertemente inclinados con respecto a sus ejes de rotación. A diferencia de los otros gigantes gaseosos, en Urano la inclinación axial es muy elevada, lo cual provoca que sus estaciones tiendan a ser sumamente extremosas.
En los dos planetas ocurren otras diferencias sutiles, pero importantes. A pesar de que, en general, Urano es menos masivo que Neptuno, contiene más hidrógeno y helio. Neptuno es por lo tanto más denso y preserva mucho más calor interno y un ambiente más activo.
URANO: es el séptimo planeta del Sistema Solar, el tercero en cuanto a mayor tamaño, y el cuarto más masivo. Posee la atmósfera planetaria más fría del Sistema Solar, con una temperatura mínima de -224 °C. Asimismo, tiene una estructura de nubes muy compleja, acomodada por niveles, donde se cree que las nubes más bajas están compuestas de agua y las más altas de metano. En contraste, el interior de Urano se encuentra compuesto principalmente de hielo y roca.
Urano tiene un sistema de anillos, una magnetosfera, y satélites numerosos. El sistema de Urano tiene una configuración única respecto a los otros planetas puesto que su eje de rotación está muy tumbado, casi hasta su plan de revolución alrededor del Sol. Por lo tanto, sus polos norte y sur se encuentran en donde la mayoría de los otros planetas tienen el ecuador. En 1986, las imágenes del Voyager 2 mostraron a Urano como un planeta sin ninguna característica especial de luz visible e incluso sin bandas de nubes o tormentas asociadas con los otros gigantes. Sin embargo, los observadores terrestres han visto señales de cambios de estación y un aumento de la actividad meteorológica en los últimos años a medida que Urano se acerca a su equinoccio. Las velocidades del viento en Urano pueden llegar o incluso sobrepasar los 250 metros por segundo (900 km/h).
NEPTUNO: es el octavo planeta en distancia respecto al Sol y el más lejano del Sistema Solar. Forma parte de los denominados planetas exteriores o gigantes gaseosos, y es el primero que fue descubierto gracias a predicciones matemáticas. Su nombre fue puesto en honor al dios romano del mar —Neptuno—, y es el cuarto planeta en diámetro y el tercero más grande en masa. Su masa es 17 veces la de la Tierra y ligeramente más masivo que su planeta «gemelo» Urano, que tiene 15 masas terrestres y no es tan denso. En promedio, Neptuno orbita el Sol a una distancia de 30,1 UA. Su símbolo astronómico es ♆, una versión estilizada del tridente del dios Neptuno.
Tras el descubrimiento de Urano, se observó que las órbitas de Urano, Saturno y Júpiter no se comportaban tal como predecían las leyes de Kepler y de Newton.Adams y Le Verrier, de forma independiente, calcularon la posición de un hipotético planeta, Neptuno, que finalmente fue encontrado por Galle, el 23 de septiembre de 1846, a menos de un grado de la posición calculada por Le Verrier. Más tarde se advirtió que Galileo ya había observado Neptuno en 1611, pero lo había confundido con una estrella.
Neptuno es un planeta dinámico, con manchas que recuerdan las tempestades de Júpiter. La más grande, la Gran Mancha Oscura, tenía un tamaño similar al de la Tierra, pero en 1994 desapareció y se ha formado otra. Los vientos más fuertes de cualquier planeta del Sistema Solar se encuentran en Neptuno.
Neptuno es un planeta azulado muy similar a Urano, es ligeramente más pequeño que éste, pero más denso.
Júpiter y Saturno no tienen una superficie sólida. Son enormes bolas de gas y líquido con una composición muy similar a la del Sol que giran sobre sí mismas a gran velocidad. No en vano, a Júpiter y Saturno se les llama ‘gigantes gaseosos’ por algo (aunque realmente deberían ser ‘gigantes líquidos’, ya que la mayor parte de su interior está en forma líquida o metálica).
La atmósfera superior de los dos planetas está dominada por un llamativo conjunto de bandas y cinturones nubosos que nada tiene que ver con los patrones climáticos de nuestro planeta. ¿A qué se debe esta diferencia? La radiación solar. Efectivamente, en la Tierra el astro rey es el causante de la circulación atmosférica. La gran diferencia de temperaturas entre las regiones tropicales y los polos es el factor principal que rige nuestra atmósfera. Este gradiente de energía provoca la creación de células de convección de Hadley cerca del ecuador y además las montañas y cordilleras se encargan de bloquear los vientos, creando patrones climáticos locales muy característicos.
¿Y qué pasa en Júpiter y Saturno? En este caso, el factor principal es el calor interno. De hecho, la diferencia de temperaturas entre el ecuador y los polos es prácticamente nula, pero para comprender el clima de estos planetas debemos saber primero cómo es su interior. Júpiter y Saturno están formados principalmente por hidrógeno y algo de helio (un 15%), más o menos igual que el Sol. A medida que nos adentramos en el interior de uno de estos mundos, la temperatura aumenta y la atmósfera se va haciendo más densa hasta que el hidrógeno se vuelve líquido. Si seguimos descendiendo el hidrógeno líquido se convierte en hidrógeno metálico.
Precisamente, es esta capa de hidrógeno metálico la causante del los potentes campos magnéticos que rodean a estos planetas. De hecho, si pudiéramos ver a simple vista la magnetosfera de Júpiter, ocuparía un tamaño en el cielo similar al de la Luna llena. Por algo se dice que es el ‘objeto’ más grande del Sistema Solar -después del Sol, obviamente-. ¿Y qué hay en el centro de estos planetas? Nadie lo sabe.
Pero volvamos a la atmósfera superior. Todo el clima de estos planetas tiene lugar en esta capa, que apenas constituye un 1% del conjunto de la atmósfera. Lo primero que nos llama la atención es el patrón de franjas nubosas de estos planetas, mucho más marcado en el caso de Júpiter, pero también visible en Saturno. Las bandas oscuras se conocen como ‘cinturones’, mientras que las claras se denominan ‘zonas’. Las zonas son por lo general masas de aire frío descendentes -recuerda que el ‘aire’ en Júpiter y Saturno es principalmente hidrógeno-, mientras que los cinturones son masas ascendentes. Los vientos de las zonas y cinturones soplan a una velocidad casi constante en la misma dirección, pero a veces en sentidos contrarios entre sí. En Júpiter los vientos pueden alcanzar los 350 km/h, pero Saturno le gana por goleada en este aspecto, con vientos que llegan a los 1800 km/h. Como resultado, la velocidad relativa entre los vientos de zonas y cinturones puede superar los 500 km/h en Júpiter.
El calor interno de los planetas es el que gobierna los vientos y la formación de estructuras en Júpiter y Saturno. ¿Pero de dónde proviene este calor? Uno de los misterios de los gigantes gaseosos es la relativa ausencia de helio en la atmósfera exterior. No obstante, sabemos que el helio forma el 15% de estos mundos. Se cree que el helio, al ser más denso que el hidrógeno, se condensa en la capa de hidrógeno metálico formando enormes gotas que se precipitan hacia el núcleo del planeta, liberando calor en el proceso. Esta lluvia de helio en un mar de hidrógeno metálico es la principal fuente de energía interna de los gigantes gaseosos, a la que debemos añadir el calor residual de formación de ambos planetas.
Pero el calor interno no explica por si solo la estructura en bandas de la atmósfera. La rapidísima rotación es otro factor a tener en cuenta. Júpiter y Saturno tienen un periodo de rotación muy similar, de unas diez horas, lo que provoca un abultamiento ecuatorial visible a simple vista. La famosa expresión ‘la Tierra está achatada por los polos’ se queda corta a la hora de describir lo que ocurre en estos planetas. Esta elevada velocidad de rotación determina también la estabilidad de bandas y cinturones. En la Tierra las tormentas vienen y van en cuestión de horas o días. En Júpiter y Saturno las grandes estructuras nubosas pueden durar fácilmente décadas o siglos. La enorme escala temporal de la atmósfera de Júpiter y Saturno es otra de las diferencias con la atmósfera terrestre.
Por contra, las pequeñas estructuras tienen una vida mucho menor. Las tormentas o remolinos que aparecen en los bordes de las franjas pueden aparecer y desaparecer en cuestión de pocos días, como en la Tierra. Curiosamente, se cree que son estas turbulencias las que generan los vientos zonales y no al revés. Es decir, no es que los fuertes vientos generen remolinos y ciclones, sino todo lo contrario.
Por otro lado, debemos tener cuidado a la hora de exagerar la magnitud del calor interno de los planetas gigantes. Sí, estamos hablando de muchísima energía en términos absolutos, pero la superficie irradiada también lo es. Por eso la potencia generada por esta fuente de calor, aunque superior a la solar, es de apenas unos cuantos vatios por metro cuadrado, mientras que la irradiación del Sol sobre la Tierra es de unos cien vatios por metro cuadrado. No obstante, en el caso de Saturno la mayor inclinación de su eje de rotación (27º frente a los 3º del eje de Júpiter) provoca cambios en la atmósfera de naturaleza estacional, por lo que, a pesar de no ser el factor más importante, la luz del Sol sí que influye en los gigantes gaseosos, o al menos en Saturno.
COMPOSICIÓN DE LOS GIGANTES HELADOS
Los planetas gigantes helados tienen una gran cantidad de volátiles atrapados en forma de hielo, como agua, metano y amoniaco alrededor de un núcleo de elementos pesados capaz de retener una atmósfera de hidrógeno-helio que normalmente llega a ser el 10% de la masa total del planeta. La mínima masa de estos planetas es de unas 10 masas terrestres, necesarias para atrapar una atmósfera como la descrita. En el Sistema Solar, planetas de este tipo serían Urano y Neptuno con masas entre 14 y 17 veces la de la Tierra.
Las capas atmosféricas son muy brumosas, con una pequeña cantidad de metano, que les aporta sus característicos colores aguamarina y azul ultramar, respectivamente. En ambos existen campos magnéticos fuertemente inclinados con respecto a sus ejes de rotación. A diferencia de los otros gigantes gaseosos, en Urano la inclinación axial es muy elevada, lo cual provoca que sus estaciones tiendan a ser sumamente extremosas.
En los dos planetas ocurren otras diferencias sutiles, pero importantes. A pesar de que, en general, Urano es menos masivo que Neptuno, contiene más hidrógeno y helio. Neptuno es por lo tanto más denso y preserva mucho más calor interno y un ambiente más activo.
URANO: es el séptimo planeta del Sistema Solar, el tercero en cuanto a mayor tamaño, y el cuarto más masivo. Posee la atmósfera planetaria más fría del Sistema Solar, con una temperatura mínima de -224 °C. Asimismo, tiene una estructura de nubes muy compleja, acomodada por niveles, donde se cree que las nubes más bajas están compuestas de agua y las más altas de metano. En contraste, el interior de Urano se encuentra compuesto principalmente de hielo y roca.
Urano tiene un sistema de anillos, una magnetosfera, y satélites numerosos. El sistema de Urano tiene una configuración única respecto a los otros planetas puesto que su eje de rotación está muy tumbado, casi hasta su plan de revolución alrededor del Sol. Por lo tanto, sus polos norte y sur se encuentran en donde la mayoría de los otros planetas tienen el ecuador. En 1986, las imágenes del Voyager 2 mostraron a Urano como un planeta sin ninguna característica especial de luz visible e incluso sin bandas de nubes o tormentas asociadas con los otros gigantes. Sin embargo, los observadores terrestres han visto señales de cambios de estación y un aumento de la actividad meteorológica en los últimos años a medida que Urano se acerca a su equinoccio. Las velocidades del viento en Urano pueden llegar o incluso sobrepasar los 250 metros por segundo (900 km/h).
NEPTUNO: es el octavo planeta en distancia respecto al Sol y el más lejano del Sistema Solar. Forma parte de los denominados planetas exteriores o gigantes gaseosos, y es el primero que fue descubierto gracias a predicciones matemáticas. Su nombre fue puesto en honor al dios romano del mar —Neptuno—, y es el cuarto planeta en diámetro y el tercero más grande en masa. Su masa es 17 veces la de la Tierra y ligeramente más masivo que su planeta «gemelo» Urano, que tiene 15 masas terrestres y no es tan denso. En promedio, Neptuno orbita el Sol a una distancia de 30,1 UA. Su símbolo astronómico es ♆, una versión estilizada del tridente del dios Neptuno.
Tras el descubrimiento de Urano, se observó que las órbitas de Urano, Saturno y Júpiter no se comportaban tal como predecían las leyes de Kepler y de Newton.Adams y Le Verrier, de forma independiente, calcularon la posición de un hipotético planeta, Neptuno, que finalmente fue encontrado por Galle, el 23 de septiembre de 1846, a menos de un grado de la posición calculada por Le Verrier. Más tarde se advirtió que Galileo ya había observado Neptuno en 1611, pero lo había confundido con una estrella.
Neptuno es un planeta dinámico, con manchas que recuerdan las tempestades de Júpiter. La más grande, la Gran Mancha Oscura, tenía un tamaño similar al de la Tierra, pero en 1994 desapareció y se ha formado otra. Los vientos más fuertes de cualquier planeta del Sistema Solar se encuentran en Neptuno.
Neptuno es un planeta azulado muy similar a Urano, es ligeramente más pequeño que éste, pero más denso.
No hay comentarios:
Publicar un comentario